

Aura (OMI)

METOP (GOME-2)

ENVISAT (SCIAMACHY)

Image Credit: NASA & ESA

ESR-2 (GOME)

Sensitivity to precursor emissions over U.S. urban area: the view from space

Xiaomeng Jin (xjin@ldeo.columbia.edu)

Lamont-Doherty Earth Observatory of Columbia University
Aura Science Team Meeting 2019

August 28, 2019

Acknowledgement:

Arlene Fiore (LDEO), Bryan Duncan (NASA), Lok Lamsal (NASA), Folkert Boersma (KNMI), Isabelle De Smedt (BIRA-ISAB)

Using satellite observations of NO₂ and HCHO to diagnose O₃-NO_x-VOC chemistry

Connecting satellite-based HCHO/NO₂ with O₃ exceedance (> 70 ppbv) probability

- OMI HCHO/NO₂ < 2.0: O₃ exceedance is **more** likely to occur with NO_x reduction (NO_x-saturated).
- OMI HCHO/NO₂ > 4.0: O₃ exceedance is **less** likely to occur with NO_x reduction (NO_x-limited).
- Between 2.0 ~ 4.0: O₃ production regime is uncertain.

Ground-based O₃: EPA AQS network OMI NO₂ and HCHO: gridded QA4ECV daily products

Analyzing the evolution of surface O₃ sensitivity using harmonized multi-satellite HCHO/NO₂

Harmonization of monthly multi-satellite HCHO and NO₂:

- Consistent retrieval algorithm (QA4ECV).
- 2. HCHO and NO₂: Adjust the overpass time difference by calculating the difference between SCIAMACHY and OMI during overlap period at a coarse resolution.
- 3. NO₂: Correct resolution difference by applying a resolution correction factor derived from OMI (Geddes et al., 2017), but allow the correction factor to vary with time.

Large decline in NO₂ observed from satellite and ground-based observations

Summertime mean satellite-based NO₂ vs. ground-based surface NO_x

Ground-based NOx: EPA AQS network, hourly data sampled at OMI overpass time

Satellite retrieved summertime mean HCHO from 1996 to 2016

Ground-based observations suggest decreasing trends of reactivity-weighed VOCs over urban areas

VOC Reactivity:
Sum of measured
VOCs weighted by
reaction rate with OH.

~ Daily VOC measurements collected from PAMS sites.

Jin et al., in prep

Space-based HCHO underestimate the decreasing trends of reactivity-weighed VOCs

Satellites show shrinking areal extent of NO_x-saturated O₃ production chemistry as NO_x emissions decline

1996 - 2000 (Summer)

2013 - 2016 (Summer)

Peak ozone moving towards city center

Jin et al., in prep

Reversal of O₃ weekend effect as a result of O₃ production regime transition

Summary

- Satellite-observed HCHO/NO₂ can diagnose the non-linear O₃-NO_x-VOC chemistry, but subject to uncertainties.
- Two-decade multi-satellite observations show large changes of O₃ production regimes over U.S. urban areas.
- The new generation TROPOMI data have promising value to detect the short-term variability of O₃ chemistry.